Test Report

Report No

255/7297330/2 of 4

This Report consists of 9 pages

Licence/Certificate No

CE 79995

Client

Handan Hengyong Protective & Clean Products Co Ltd 1-1-1201.

455 Gongnong Road,

Shijiazhuang,

Hebei

CN

050051

Authority & date

BSI Product Services: Service Management Order No 7297330

dated 2 October 2008

Equipment Record No 10100995

Items tested

HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

Thirty (30) samples submitted

Specification

Article 11A Audit test to BS EN 149:2001 + A1: 2009 Respiratory protective devices – Filtering half masks to protect against particles– Incorporating

Corrigendum July 2002. See Assessment Summary

Results

See Assessment Summary

Prepared by

M K Thompson

Technical Engineer

Authorized by

M Mayo

Laboratory Manager

Issue Date

29 October 2009

Conditions of issue

This Test Report is issued subject to the conditions stated in current issue of CP0322 'Conditions of Contract for Testing'. The results contained herein apply only to the particular sample/s tested and to the specific tests carried out, as detailed in this Test Report. The issuing of this Test Report does not indicate any measure of Approval, Certification, Supervision, Control or Surveillance by BSI of any product. No extract, abridgement or abstraction from a Test Report may be published or used to advertise a product without the written consent of the Managing Director, BSI Testing Services, who reserves the absolute right to agree or reject all or any of the details of any items or publicity for which consent may be sought.

Morph

Page 2 of 9

BSI

BS EN 149:2001 + A1: 2009

SPECIFICATION:

Article 11A Audit testing to BS EN 149:2001 Respiratory protective

devices - Filtering half masks to protect against particles

Incorporating Corrigendum No 1 (See Assessment Summary for details)

CLIENT/MANUFACTURER: Handan Hengyong Protective & Clean Products Co Ltd

MODEL:

HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

BUILD STANDARD:

As per Certified Product

NUMBER OF SAMPLES:

30

ER NO: 10100995

DATE RECEIVED: 23 September 2009

DATE STARTED: 12 October 2009

FILTER CLASSIFICATION: FFP1

INTRODUCTION

The samples detailed above were submitted by the Client for an Article 11A audit assessment.

The samples were assessed against Clause 7.9.2 'Penetration of filter material' and Clause 7.16 'Breathing Resistance' only at the request of BSI Product Certification.

This Report describes the Article 11A Audit assessment for Model HY9610. Reports 255/7297330/1 of 4, 255/7297330/3 of 4 and 255/7297330/4 of 4 describe the assessments of Models HY9610, HY9622 and HY8922 respectively.

This Report should be read in conjunction with the Specification referenced above.

ASSESSMENT SUMMARY

An Assessment Summary is presented on page 3.

Page 3 of 9

BSI

BS EN 149:2001 + A1: 2009

ASSESSMENT SUMMARY

CLAUS	E NO AND TITLE	ASSESSMENT	LOCATION
7	REQUIREMENTS		
7.1	General	= -	Page 4
7.2	Nominal values and tolerances	-	Page 4
7.3	Visual inspection	N/As (1)	-::
7.4	Packaging	N/As (1)	
7.5	Material	N/As (1)	-,
7.6	Cleaning and disinfecting	N/As (1)	:: - .,
7.7	Practical performance	N/As (1)	=
7.8	Finish of parts	N/As (1)	-
7.9	Leakage	-	92 -
7.9.1	Total inward leakage	N/As (1)	_
7.9.2	Penetration of filter material	Pass	Pages 4-7
7.10	Compatibility with skin	N/As (1)	Œ
7.11	Flammability	N/As (1)	-
7.12	Carbon dioxide content of inhalation air	N/As (1)	-
7.13	Head harness	N/As (1)	-
7.14	Field of vision	N/As (1)	-
7.15	Exhalation valve(s)	N/As (1)	-
7.16	Breathing resistance	Pass	Pages 8-9
7.17	Clogging	N/As (1)	-
7.18	Demountable parts	N/As (1)	-
9	Marking	N/As (1)	-
10	Information to be supplied by the manufacturer	N/As (1)	-

N/As: Not Assessed

⁽¹⁾ Not required by BSI Product Certification.

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

CLAUSE	REQUIRE	MENT				ASSESSMENT	
7	REQUIRE	REQUIREMENTS					
7.1	General						
1020	In all tests	all samples	shall meet the	requirements.		-	
7.2	Nominal v	alues and	tolerances				
	Standard a temperatu minima, sh specified,	nerwise spectare expressere limits, valuall be subjethe ambient etemperatu	-				
7.9	Leakage						
7.9.2	Penetratio	n of filter ma	aterial				
	The penet meet the r samples o aerosol. T using the performed - 3 s	Pass See Table A					
	- 3 s						
	Testing in exposure for particle the Storag						
	- for						
	ten of	cordance with a contract of the contract of th	th clause 8.3.3 anditioning in a l.	st for mechanical of the standard ccordance with openetration @ 95	followed by clause 8.3.2		
	Sample	Pre-test	Flow	Max Specified	Actual		
	No	condition	through filter (I/min)	Penetration (%)	Penetration (%)		
	1	AR	95	20	0.5316	Pass	
	2	AR	95	20	0.6066	Pass	
	3	AR	95	20	0.8566	Pass	
	7	SW	95	20	0.8587	Pass	
	8	SW	95	20	0.1745	Pass	
	9	SW	95	20	0.5260	Pass	

AR: As Received

SW: Simulated Wear

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST (CONTINUED)

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

Table B. Maximum sodium chloride penetration

	Sample 10	Sample 11	Sample 12			
Pre-test condition	Mechanical streng	th and Temperatu	re Conditioning			
Flow through filter		95 l/min				
Elapsed Time in	Act	ual Penetration %	9=			
Minutes	(Maximum pe	(Maximum permitted penetration 20.0%)				
5	0.8488	0.7640	0.7211			
10	0.8667 (1)	0.8159	0.8129			
15	0.8442	1.0909 (1)	0.8617			
20	0.7877	1.0100	0.8943			
25	0.6740	0.9716	0.8962 (1)			
30	0.5999	0.8758	0.8748			
35	0.5241	0.7832	0.8274			
40		0.6713	0.7753			
45			0.6652			
50			0.5922			
55		41				
60						
65			<u> </u>			
70						
75						
80						
85						
90						
95						
100						
105						
110						
Assessment:	Pass	Pass	Pass			

After the Actual Penetration readings shown with suffix (1), the reading at 5 subsequent sampling intervals showed a decline and the testing was terminated without the 120mg exposure limit being reached, as permitted by BS EN 13274-7: 2008.

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST (CONTINUED)

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

CLAUSE	REQUIRE	MENT				ASSESSMENT
7.9 7.9.2	Leakage (Penetration The penetr meet the re samples of aerosol. Te using the F performed - 3 s - 3 s in o Testing in exposure t for particle the Storag - for - 3 acc tem of t	continued) n of filter maration of the equirements f particle filteresting in accordance with a significant filtering development on the etest, accordance est with a significant filtering development filtering filtering development filtering development filtering filtering filtering filtering development filtering filtering development filtering development filtering development filtering development filtering development filtering development filtering filtering development filt	filter of the part of Table 1 of the ring half mask cordance with others according eceived, of the standard with Clause 8. pecified mass ovices claimed to rding to EN 13 ole devices on: er the test for rath clause 8.3.3 onditioning in a l.	11 of the standa of test aerosol of o be re-usable a 274-7, shall be p	total of 9 d for each e standard shall be ent described ard using the f 120 mg, and dditionally performed: ngth in followed by clause 8.3.2	Pass See Table C and D
	Sample No	Pre-test condition	Flow through filter (I/min)	Max Specified Penetration (%)	Actual Penetration (%)	
	1	AR	95	20.0	1.45	Pass
	2	AR	95	20.0	2.17	Pass
	3	AR	95	20.0	1.59	Pass
	7	SW	95	20.0	1.08	Pass
	8	SW	95	20.0	0.77	Pass
	9	SW	95	20.0	1.12	Pass

AR: As Received

SW: Simulated Wear

Page 7 of 9

BSI

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST (CONTINUED)

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask - (Non valve)

Table D. Maximum paraffin oil penetration

	Sample 10	Sample 11	Sample 12		
Pre-test condition	Mechanical str	rength and Tempera	ature Conditioning		
Challenge concentration (mg/m³)					
Flow through filter	95 l/min				
Elapsed Time in	Actual Penetration %				
Minutes	(Maximu	m permitted penetra			
3	3.87	2.98	3.09		
5	3.91	3.43	3.29		
10	4.10	3.87	3.49		
15	4.29	4.32	3.70		
20	4.81	4.10	4.10		
25	5.69	4.54	4.30		
30	5.69	4.77	4.70		
35	5.69	4.77	4.91		
40	5.69	4.94	4.87		
45	6.36	5.43	5.06		
50	6.36	5.66	5.45		
55	5.61	5.66	5.64		
60	6.33	5.88	5.83		
65	6.55	6.33	6.21		
70	6.77	6.55	6.72		
75	7.00	6.77	6.43		
Assessment:	Pass	Pass	Pass		

A loading of 120 mg was achieved after a period of 63 minutes, 10 seconds had elapsed

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST (CONTINUED)

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

CLAUSE	REQUIRE	MENT				ASSESSMENT
	Breathing The breath filtering hal the standar	Pass (See Tables E, F and G)				
	A total of 9 as received clause 8.3. wearing in	valveless par d, 3 after temp 2 of the stand accordance w	clause 8.9 of the ticle filtering has berature conditionard and 3 after with clause 8.3.1 stance @ 30 l/m Continuous flow (l/min)	If masks shall oning in accord the test for sin of the standa	dance with nulated	
	1	AR	30	0.6	0.27	Pass
	2	AR	30	0.6	0.19	Pass
	3	AR	30	0.6	0.19	Pass
	4	TC	30	0.6	0.22	Pass
	5	TC	30	0.6	0.21	Pass
	6	TC	30	0.6	0.28	Pass
	7	SW	30	0.6	0.27	Pass
	8	SW	30	0.6	0.22	Pass
	9	SW	30	0.6	0.19	Pass

AR: As Received SW: Simulated Wear TC: Temperature Conditioned

BS EN 149:2001 + A1: 2009

EXAMINATION AND TEST (CONTINUED)

Model Type:- HY8910 FFP1 Horizontal Fold-flat Disposable Mask – (Non valve)

CLAUSE	REQUIRE	MENT				ASSESSMENT
7.16	Breathing					
	Table F: In	halation resist	tance @ 95 l/mi			
	Sample No	Pre-test condition	Continuous flow (I/min)	Max spec inhalation resistance (mbar)	Actual inhalation resistance (mbar)	
	1	AR	95	2.1	0.72	Pass
	2	AR	95	2.1	0.63	Pass
	3	AR	95	2.1	0.59	Pass
	4	TC	95	2.1	0.64	Pass
	5	TC	95	2.1	0.68	Pass
	6	TC	95	2.1	0.69	Pass
	7	SW	95	2.1	0.75	Pass
	8	SW	95	2.1	0.76	Pass
	9	SW	95	2.1	0.62	Pass
		xhalation resisting five oriental	stance @ 160 l/			
	Sample No	Pre-test condition	Continuous flow (I/min)	Max spec exhalation resistance (mbar)	Actual exhalation resistance (mbar)	
	No 1	condition	Continuous flow (I/min) 160	Max spec exhalation resistance (mbar) 3.0	exhalation resistance (mbar) 1.01	Pass
	No 1 2	AR AR	Continuous flow (I/min) 160 160	Max spec exhalation resistance (mbar) 3.0 3.0	exhalation resistance (mbar) 1.01 1.10	Pass Pass
	1 2 3	AR AR AR AR	Continuous flow (l/min) 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11	Pass Pass
	No 1 2 3 4	AR AR AR AR TC	Continuous flow (l/min) 160 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11	Pass Pass Pass
	No 1 2 3 4 5 5	AR AR AR TC TC	Continuous flow (I/min) 160 160 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11 1.01 0.98	Pass Pass Pass Pass
	No 1 2 3 4 5 6	AR AR AR TC TC TC	Continuous flow (I/min) 160 160 160 160 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0 3.0 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11 1.01 0.98 0.97	Pass Pass Pass
	No 1 2 3 4 5 6 7	AR AR AR TC TC TC SW	Continuous flow (I/min) 160 160 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11 1.01 0.98 0.97 1.16	Pass Pass Pass Pass
	No 1 2 3 4 5 6	AR AR AR TC TC TC	Continuous flow (I/min) 160 160 160 160 160 160	Max spec exhalation resistance (mbar) 3.0 3.0 3.0 3.0 3.0 3.0 3.0	exhalation resistance (mbar) 1.01 1.10 1.11 1.01 0.98 0.97	Pass Pass Pass Pass Pass Pass